清华大学化学系博士生导师简介:尉志武

2015-05-13 11:49:41来源:网络

  考博考生生准备要参加博士研究生考试时,必须要先确定准备攻读博士的相关专业,然后选择该专业有招生需求的学校,接下来应该联系博士生导师,只有当博士生导师同意考生报考,考博生才可以报考。所以提前了解博士生导师的学术文章及联系方式很重要,新东方在线特整理了各招收博士院校博导的简介及联系方式供考博生参考。

  

\

尉志武(YU, Zhiwu)

  博士、教授、博导

  (Ph.D., Professor of Chemistry)

  Tel. (0) 10-62792492

  Fax. (0) 10-62771149

  Email:yuzhw@tsinghua.edu.cn

  教育背景

  学士学位(BSc): 清华大学化学与化学工程系(1984);

  硕士学位(MSc): 清华大学化学系(1987);

  博士学位(PhD): 伦敦大学(英国)(King’s College London)(1995);

  博士后(PostDoc):伊利诺伊大学(美国)香槟分校(UIUC)(1996-98)

  工作履历

  1999 - 清华大学化学系 副教授、教授

  学术兼职

  中国化学会理事,化学热力学与热分析专业委员会 副主任

  生物物理化学专业委员会委员

  物理化学学报,编委会委员

  Biomedical Spectroscopy and Imaging, Regional Editor for ASIA

  研究领域

  生物物理化学、化学热力学与热分析

  学术成果

  研究工作主要分为以下几个方面:(一)生物物理化学:研究内容包括生物膜相变与稳定性、蛋白质变性、膜与磷脂相互作用;研究对象涉及磷脂、糖脂、固醇、蛋白质、核酸;在方法学方面提出了一种鉴别蛋白质变性二态性的“中止-恒温”法,在采用MD研究蛋白与脂膜作用的工作中,提出了基于氨基酸残基作用概率的模块图示法。(二)光谱学:研究内容包括氢键、卤键;研究对象涉及生物大分子、离子液体和有机小分子;在方法学方面提出了超额光谱的概念,提出了一种基于二维相关光谱的分子选择性相互作用判别方法,对二维相关光谱在峰重叠情况下的可靠性和判断事件序列的本质进行了研究,对Benesi-Hildebrand方法的可靠性进行了研究,在红外吸收峰的指认方面提出了量子化学计算数值与实验观测数值的线性关系准则。(三)分子自组装:研究内容包括双亲分子自组装体和葫芦脲与小分子配体的组装,提出了双亲分子自组装体相变过程中头、尾部和界面区域可以不协同的思想,在LB膜研究中提出了超额面积的概念。(四)溶液化学与热化学:研究内容包括超额焓、超额体积和分子的溶剂化作用等,对Flory理论进行改进,提出了双参数法。

  (一) 生物物理化学

  1. The Interaction of Human Synovial Phospholipase A2 with Mixed Lipid Bilayers: A Coarse-Grain and All-Atom Molecular Dynamics Simulation Study, Biochemistry, 52(8):1477−1489 (2013). (Qin SS, Yu YX, Li QK, Yu ZW*)

  2. Experimental and Theoretical Investigations on the Direct Interactions between Urea and Phospholipids in Aqueous Solutions Biomedical Spectroscopy and Imaging, 2(3):141−153 (2013). (Ying Feng, Guo-Shi Wu, and Zhi-Wu Yu*)

  3. Fibrillar Seeds Alleviate Amyloid-beta Cytotoxicity by Omitting Formation of Higher-Molecular-weight oligomers, Biochem. Biophys. Res. Comm., 439 (3): 321-326 (2013). (Wei-hui Wu, Qian Liu, Xun Sun, Ji-sheng Yu, De-sheng Zhao, Ye-ping Yu, Jun-jie Luo, Jia Hu, Zhi-wu Yu*, Yu-fen Zhao, Yan-Mei Li*)

  4. In Situ Unfolded Lysozyme Induces the Lipid Lateral Redistribution of a Mixed Lipid Model Membrane, J. Phys. Chem. B, 116(41):12381−12388 (2012). (Luo JJ, Wu FG, Qin SS, and Yu ZW*)

  5. Structural Properties of the Liquid Ordered Phase of Phosphatidylcholine/Stigmasterol Liposomes: a Synchrotron X-Ray Diffraction Study, Acta Phys. Chim. Sin, 28(8), 2008-2014 (2012). (Wu RG, Chen L, Yu ZW*)

  6. The Differences in Heparin Binding for the C-terminal Basic-sequence-rich Peptides of HPV-16 and HPV-18 Capsid Protein L1, J. Chem. Thermodynamics, 47: 130–137 (2012). (Sun J, Yu JS, Yu ZW, Zha X, Wu YQ*)

  7. Denaturation Behaviors of Two-State and Non-Two-State Proteins Examined by an Interruption–Incubation Protocol, J. Phys. Chem. B, 115(28): 8901-8909 (2011) (Luo JJ, Wu FG, Yu JS, Wang R, and Yu ZW*)

  8. Regional Cooperativity in the Phase Transitions of Dipalmitoylphosphatidylcholine Bilayers: The Lipid Tail Triggers the Isothermal Crystallization Process, J. Phys. Chem. B, 115(26): 8559-8568 (2011). (Wu FG, Jia Q, Wu RG, and Yu ZW*)

  9. Unfolding and refolding details of lysozyme in the presence of β-casein micelles, Phys. Chem. Chem. Phys., 13: 3429-3436 (2011). (Wu FG, Luo JJ, and Yu ZW*)

  10. Structural and Kinetic Properties of a-Tocopherol in Phospholipid Bilayers, a Molecular Dynamics Simulation Study, J. Phys. Chem. B, 113(52): 16537-16546 (2009). (Qin SS, Yu ZW*, Yu, YX)

  11. Structural Characterization on the Gel to Liquid-Crystal Phase Transition of Fully Hydrated DSPC and DSPE Bilayers, J. Phys. Chem. B, 113(23): 8114-8123 (2009). (Qin SS, Yu ZW*, Yu, YX)

  12. Water Mediates the Metastable Crystal-to-Stable Crystal Phase Transition Process in Phospholipid Aqueous Dispersion, J. Phys. Chem. B, 113(4): 869-872 (2009). (Wu FG, Chen L, and Yu ZW*)

  13. The Role of Sterol Rings and Side Chain on the Structure and Phase Behaviour of Sphingomyelin Bilayer, Molecular Membrane Biology 25(6&7): 485-497 (2008). (Gao WY, Quinn PJ, and Yu ZW*)

  14. Phase Diagram of Androsterol-dipalmitoylphosphatidylcholine Mixtures Dispersed in Excess Water, J. Phys. Chem. B, 112(28): 8375-8382 (2008). (Gao WY, Chen L, Wu RG, Yu ZW*, and Quinn PJ)

  15. Liquid Ordered Phase of Binary Mixtures Containing Dipalmitoylphosphatidylcholine and Sterols, Acta Phys. Chim. Sin., 24(7): 1149-1154 (2008) (Gao WY, Chen L, Wu FG, and Yu ZW*)

  16. The Partition of Cholesterol between Ordered and Fluid Bilayers of Phosphatidylcholine: a Synchrotron X-ray Diffraction Study, Biochim. Biophys. Acta – Biomembranes, 1768(11), 2873-2881 (2007). (Chen L, Yu ZW*, and Quinn PJ*)

  17. Condensation Effect of Cholesterol, Stigmasterol, and Sitosterol on Dipalmitoylphosphatidylcholine in Molecular Monolayers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293(1-3), 123-129 (2007) (Su YL, Li QZ, Chen L, and Yu ZW*)

  18. Phase Diagram of Stigmasterol-Dipalmitoylphosphatidylcholine Mixtures Dispersed in Excess Water, Biochim. Biophys. Acta – Biomembranes, 1758 (6), 764-771(2006). (Wu RG, Chen L, Yu ZW*, and Quinn PJ)

  19. Characterisation of a Quasi-crystalline Phase in Codispersions of Phosphatidylethanolamine and Glucocerebroside, Biophysical Journal, 86(4): 2208-2217 (2004) (Feng Y, Rainteau D, Chachaty C, Yu ZW*, Wolf C, and Quinn PJ)

  20. The Kinetics and Mechanism of the Formation of Crystalline Phase of Dipalmitoylphosphatidylethanolamine Dispersed in Dimethyl Sulfoxide Solutions. Chemistry and Physics of Lipids, 127(2):153-159 (2004) (Chen L, Xie X, Yu ZW*, Quinn PJ)

  21. Stable Cubic Phase in the Codispersion of Glucocerebroside and Palmitoyloleoylphosphatidylethanolamine, Chemistry and Physics of Lipids, 126(2):141-148 (2003) (Feng Y, Yu ZW*, and Quinn PJ)

  22. Effect of Urea, Dimethylurea, and Tetramethylurea on the Phase Behavior of Dioleoylphosphatidylethanolamine, Chemistry and Physics of Lipids, 114(2):149-157 (2002) (Feng Y, Yu ZW*, and Quinn PJ)

  23. 二价金属离子对鲑鱼精DNA热稳定性的影响, 高等学校化学学报,23(12): 2366-2368 (2002). (邬瑞光, 尉志武*, 陈琳, 周蕊)

  24. Kinetic Phase Behavior of Distearoylphosphatidylethanolamine Dispersed in Glycerol. Biophysical Chemistry, 89(2-3): 231-238 (2001) (Chen L, Yu ZW*, Quinn PJ)

  25. The Effect of Dimethyl Sulphoxide on the Structure and Phase Behaviour of Palmitoleoylphosphatidylethanolamine. Biochim. Biophys. Acta – Biomembranes, 1509(1-2):440-450 (2000) (Yu ZW and Quinn PJ*)

  26. The Modulation of Membrane Structure and Stability by Dimethyl Sulphoxide (Review). Molecular Membrane Biology, 15:59-68 (1998) (Yu ZW and Quinn PJ*)

  27. Molecular Forces between Membranes Displaying Neutral Glycosphingolipids: Evidence for Carbohydrate Attraction. Biochemistry, 37(6): 1540-1550 (1998). (Yu ZW, Calvet TL, and Leckband D*)

  28. Solvation Effects of Dimethyl Sulphoxide on the Structure of Phospholipid Bilayers. Biophysical Chemistry, 70(1): 35-39 (1998). (Yu ZW and Quinn PJ*)

  29. Thermotropic Properties of Dioleoylphosphatidylethanolamine in Aqueous Dimethylsulphoxide Solutions. Archives of Biochemistry and Biophysics, 332(1): 187-195 (1996). (Yu ZW, Williams WP, and Quinn PJ*)

  30. Phase Stability of Phosphatidylcholines in Dimethylsulphoxide Solutions. Biophysical Journal, 69(4):1456-1463 (1995). (Yu ZW and Quinn PJ*)

  31. Phase Behaviour of Distearoylphosphatidylethanolamine in Glycerol - A Thermal and X-ray Diffraction Study. Biochim. Biophys. Acta – Biomembranes, 1237(2): 135-142 (1995)(Yu ZW, Tsvetkova NM, Tsonev LI, and Quinn PJ*)

  32. Dimethyl Sulphoxide: a Review of Its Applications in Cell Biology. Bioscience Reports, 14(6): 259-281 (1994). (Yu ZW and Quinn PJ*)

  (二)光谱学

  1. Hydrogen Bonding Interactions in Ethanol and Acetonitrile Binary System: A Near and Mid-Infrared Spectroscopic Study, J. Mol. Struct.. DOI: 10.1016/j.molstruc.2014.02.027 (Zhou Y, Zheng YZ, Sun HY, Deng G, and Yu ZW*)

  2. Hydrogen-bonding Interactions Between [BMIM][BF4] and Dimethyl Sulfoxide, J. Mol. Struct. DOI: 10.1016/j.molstruc.2014.01.013. (Zheng YZ, He HY, Zhou Y, and Yu ZW*)

  3. Halogen-bond and Hydrogen-bond Interactions between Three Benzene Derivatives and Dimethyl Sulphoxide, Phys. Chem. Chem. Phys. DOI:10.1039/C3CP55451A (Zheng YZ, Wang NN, Zhou Y, and Yu ZW*)

  4. Hydrogen- bonding Interactions Between [BMIM][BF4] and Acetonitrile, Phys. Chem. Chem. Phys. 15(41): 18055 -18064 (2013). (Zheng YZ, Wang NN, Luo JJ, Wu FG, Zhou Y, and Yu ZW*)

  5. The Hydrogen-Bonding Interactions between 1-Ethyl-3-Methylimidazolium Lactate Ionic Liquid and Methanol, Australian Journal of Chemistry, 66(1):50−59 (2013). (He HY, Chen H, Zheng YZ, Zhang XC, Yao XQ, Yu ZW, Zhang SJ*)

  6. Hydrogen Bonding Behaviors of Binary Systems Containing the Ionic Liquid 1-Butyl-3-Methylimidazolium Trifluoroacetate and Water/Methanol, J. Phys. Chem. B, 115(38):11127–11136 (2011). (Zhang QG, Wang NN, Wang SL, and Yu ZW*)

  7. Hydrogen Bonding Interactions between a Representative Pyridinium-Based Ionic Liquid [BuPy][BF4] and Water/Dimethyl Sulfoxide, J. Phys. Chem. B, 114(26):8689–8700 (2010). (Wang NN, Zhang QG, Wu FG, Li QZ, and Yu ZW*)

  8. Hydrogen Bonding Interactions between the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate and Water, J. Phys. Chem. B, 114(14): 4747-4754 (2010). (Zhang QG, Wang NN, and Yu ZW*)

  9. Generalized 2D and Time-resolved FTIR Studies of Protein Unfolding Events, J. Mol. Struct., 974(14): 203–209 (2010). (Fabian H*, Yu ZW, Wang YW, and Naumann D)

  10. An Insight into the Sequential Order in Two-dimensional Correlation Spectroscopy, Applied Spectroscopy, 63(3): 344-353 (2009). (Jia Q, Wang NN, and Yu ZW*)

  11. Hydrogen Bonding Interactions in Three 2-Mercaptoethanol Systems: an Excess Infrared Spectroscopic Study, Applied Spectroscopy, 63(12): 1356–1362 (2009) (Wang NN, Li QZ, and Yu ZW*)

  12. Selective Molecular Interactions between Dimethyl Sulfoxide and the Functional Groups of 2-Mercaptoethanol, J. Mol. Struct., 883-884: 55-60 (2008) (Wang NN, Jia Q, Li QZ, and Yu ZW*)

  13. A Novel Normalization Method Based on Principal Component Analysis to Reduce the Effect of Peak Overlaps in Two-Dimensional Correlation Spectroscopy, J. Mol. Struct., 883-884: 66-72 (2008) (Wang YW, Gao WY, Wang XG, and Yu ZW*)

  14. Point-Point and Point-Line Moving-window Correlation Spectroscopy and Its Applications, J. Mol. Struct., 883-884: 109-115 (2008) (Zhou Q*, Sun SQ, Zhan DQ, and Yu ZW*)

  15. Excess Infrared Absorption Spectroscopy and Its Applications in the Studies of Hydrogen Bonds in Alcohol-Containing Binary Mixtures, Applied Spectroscopy, 62(2), 166-170 (2008) (Li QZ, Wang NN, Zhou Q, Sun SQ, and Yu ZW*)

  16. Molecular Interactions between Pyrazine and n-Propanol, Chloroform, or Tetrahydrofuran, Spectrochimica Acta Part A, 70(4):793-798 (2008) (Wang R, Li QZ, Wu RG, Wu GS, and Yu ZW*)

  17. The Validity and Reliability of Benesi-Hildebrand Method, Acta Phys. Chim. Sin., 23(9), 1353-1359 (2007) (Wang R and Yu ZW*)

  18. The Role of Methyl Groups in the Formation of Hydrogen Bonds in DMSO-Methanol Mixtures, J. Am. Chem. Soc. 128 (5), 1438-1439(2006). (Li QZ, Wu GS, and Yu ZW*)

  19. A Modified Mean Normalization Method to Reduce the Effect of Peak Overlap in Two-Dimensional Correlation Spectroscopy, J. Mol. Struct., 799 (1-3), 128-133 (2006) (Wang YW, Gao WY, Noda I, and Yu ZW*)

  20. Overlap May Cause Misleading Results in Two-dimensional Correlation Spectra. Applied Spectroscopy, 59(3), 388-391 (2005) (Yu ZW*, Wang YW, and Liu J)

  21. Selective Molecular Interactions between Dimethyl Sulfoxide and Paraldehyde Studied by Two-dimensional Correlation FT-IR spectroscopy. Vibrational Spectroscopy, 36(2): 203-206 (2004) (Liu J, Feng Y, Chen L, Wu GS, and Yu ZW*)

  22. Effect of Noise on the Evaluation of Correlation Coefficients in Two-Dimensional Correlation Spectroscopy. Applied Spectroscopy, 57(12): 1605-1609 (2003) (Yu ZW* , Liu J, and Noda I)

  23. On the Normalization Method in 2D-correlation Spectra when Concentration is Used as Perturbation Parameter. Applied Spectroscopy, 57(2): 164-167 (2003) (Yu ZW* and Noda I)

  24. Determination of Selective Molecular Interactions Using Two Dimensional Correlation FTIR Spectroscopy. J. Phys. Chem. A, 106(30): 6683-6687 (2002) (Yu ZW*, Chen L, Sun SQ, and Noda I)

  (三)分子自组装

  1. Selective-Recognition-Induced Nanostructures in a Cucurbit[7]uril-based Host−Guest System: Micelles, Nanorods and Nanosheets, Phys. Chem. Chem. Phys., 14: 8506-8510 (2012) (Yu JS, Wu FG, Zhou Y, Zheng YZ, and Yu ZW*)

  2. Stepwise Ordering of Imidazolium-Based Cationic Surfactants during the Cooling-Induced Crystallization, Langmuir, 28 (19): 7350–7359 (2012) (Wu FG, Yu JS, Sun SF, Sun HY, Luo JJ, and Yu ZW*)

  3. Crystallization from the micellar phase of imidazolium-based cationic surfactants, J. Colloid Interface Science, 374(1): 197–205 (2012) (Wu FG, Wang NN, Zhang QG, Sun SF, and Yu ZW*)

  4. Comparative Studies on the Crystalline to Fluid Phase Transitions of Two Equimolar Cationic/Anionic Surfactant Mixtures Containing Dodecylsulfonate and Dodecylsulfate, Langmuir, 27 (24): 14740–14747 (2011) (Wu FG, Yu JS, Sun SF, and Yu ZW*)

  5. Formation and Transformation of the Subgel Phase in Dioctadecyldimethylammonium Bromide Aqueous Dispersions, Langmuir, 27 (6): 2349–2356 (2011). (Wu FG, Yu ZW*, and Ji, Gang)

  6. Mechanism of the Fast Exchange Between Bound and Free Guests in Cucurbit[7]uril–Guest Systems, Phys. Chem. Chem. Phys., 13: 3638-3641 (2011). (Yu JS, Wu FG, Tao LF, Luo JJ, and Yu ZW*)

  7. 两亲性分子聚集体的相变及其协同性研究,中国科学 B,40(9):1210–1216 (2010). (尉志武,吴富根)

  8. Acetonitrile Induces Nonsynchronous Interdigitation and Dehydration of Dipalmitoylphosphatidylcholine Bilayers, J. Phys. Chem. B, 114(39): 12685-12691 (2010). (Wu FG, Wang NN, Tao LF, and Yu ZW*)

  9. Infrared Spectroscopy Reveals the Nonsynchronicity Phenomenon in the Glassy to Fluid Micellar Transition of DSPE-PEG2000 Aqueous Dispersions, Langmuir, 26(15): 12777-12784 (2010). (Wu FG, Luo JJ, and Yu ZW*)

  10. Nonsynchronicity Phenomenon Observed during the Lamellar–Micellar Phase Transitions of 1-Stearoyllysophosphatidylcholine Dispersed in Water, J. Phys. Chem. B, 114(6): 2158-2164(2010). (Wu FG, Wang NN, Yu GS, Luo JJ, and Yu ZW*)

  11. Non-Synchronous Change in the Head and Tail of DODAB Molecules during the Liquid Crystalline-to-Coagel Phase Transformation Process, Langmuir, 25(23): 13394-13401(2009). (Wu FG, Wang NN, and Yu ZW*)

  12. New Features on the Phase Transitions of Behenic Acid Monolayers as Unveiled by 2D-compressibility Coefficient, Chinese Journal of Chemistry, 26(9): 1596-1600 (2008) (Gao WY and Yu ZW*)

  13. Characterisation of the Liquid-expanded to Liquid-condensed Phase Transition of Monolayers by Means of Compressibility, Langmuir, 18(11): 4530-4531 (2002) (Yu ZW* Jin J, and Cao Y)

  (四)溶液化学与热化学

  1. A New Unconventional Halogen Bond C–X···H–M between HCCX (X = Cl and Br) and MH2 (M = Be and Mg): An Ab Initio Study, Journal of Computational Chemistry, 31(8):1662–1669 (2010) (Li QZ*, Dong X, Jing B, Li WZ, Cheng JB, Gong BA, and Yu ZW)

  2. Solvent Effect on the Role of Methyl Groups in Formation of O???HO Hydrogen Bond in Dimethyl Ether-methanol Complex, Journal of Molecular Structure - Theochem., 862(7): 74-79 (2008). (Li QZ, Wang NN, and Yu ZW*)

  3. 生物热化学研究进展, 化学进展, 18 (7/8), 1049-1055 (2006) (尉志武*, 高文颖)

  4. Thermokinetic Analysis of the Hydration Process of Calcium Phosphate Cement, Journal of Thermal Analysis and Calorimetry, 85 (3), 785-789 (2006) (Gao WY, Wang YW, Dong LM, and Yu ZW*)

  5. The modulation of desulphurization properties of calcium oxide by alkali carbonates Journal of Thermal Analysis and Calorimetry. 67(3): 745-750 (2002). (Wu ZH, Kou P, Yu ZW*)

  6. Excess Molar Enthalpies for Binary Mixtures of Benzylalcohol and Heptanone Isomers at Different Temperatures. J. Chem. Engineering Data, 46(5): 1258-1260 (2001) (Zhao X, Yu ZW*, Zhou R, and Liu Y)

  7. A Principle to Correlate Extreme Values of Excess Thermodynamic Functions with Partial Molar Quantities. Science in China B, 44(3):315-319 (2001). (Yu ZW*, Liu Y, Zhou R, and Xue FY)

  8. Volumetric Properties of Binary Systems between Tetralin and Alkylbenzenes. Fluid Phase Equilibria, 164(2): 209-216 (1999). (Yu ZW*, He XH, Zhou R, and Liu Y)

  9. Excess Molar Volumes of n?Alkanes?thiophene Mixtures. J. Solution Chemistry 21(5): 497-506 (1992). (Yu ZW*, Liu Y, and Sun XD)

  10. Excess Molar Enthalpies of n?Octanol + n-Alkanes and i-Pentanol + n-Dodecane under High Pressures. Thermochim. Acta, 183: 99-106 (1991) (Jiang Y, Liu Y*, Sun XD, and Yu ZW)

关注新东方在线服务号

回复【考博真题】领取备考必看真题集

更多资料
更多>>
更多内容
更多>>
更多好课>>
更多>>
更多资料